The XHex homeobox gene is expressed during development of the vascular endothelium: overexpression leads to an increase in vascular endothelial cell number

نویسندگان

  • Craig S. Newman
  • Frank Chia
  • Paul A. Krieg
چکیده

The Hex/Prh homeobox gene is expressed in a subset of adult blood cell types and may play a role in the differentiation of the myeloid and B-cell lineages. In a search for homeobox genes involved in cardiovascular development, we have independently isolated a Xenopus laevis cDNA which appears to be the amphibian orthologue of Hex/Prh. Based on high sequence similarity in a number of regions, particularly the critical homeobox, we have named this gene XHex. This developmentally regulated gene is first expressed in the dorsal endomesoderm of the gastrula stage embryo. This tissue goes on to contribute to the structures of the embryonic liver and XHex continues to be expressed in the liver throughout development. From the tailbud stage, XHex is expressed in vascular endothelial cells throughout the developing vascular network. Vascular expression of XHex is transient and commences slightly after expression of the receptor tyrosine kinase gene, flk-1, which is known to be essential for vascular development. This observation raises the possibility that XHex is one of the transcription factors that responds to the VEGF/Flk-1 signal transduction pathway leading to differentiation of vascular endothelial cells. XHex is unique amongst homeobox genes in displaying expression in the endothelial layer throughout the developing vasculature. Overexpression of XHex sequences in the frog embryo causes disruption to developing vascular structures and an increase in the number of vascular endothelial cells, suggesting a possible role in regulation of cell proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells

Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...

متن کامل

Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...

متن کامل

The transcription factor HOXC9 regulates endothelial cell quiescence and vascular morphogenesis in zebrafish via inhibition of interleukin 8.

RATIONALE The transcription factor HOXC9 belongs to the homeobox gene family acting as developmental morphogen in several species. HOXC9 is EXPRESSED in different vascular beds in vivo. Yet vascular functions of HOXC9 have not been studied. OBJECTIVE This study was aimed at characterizing HOXC9 functions in human vascular endothelial cells and in zebrafish vascular development. METHODS AND ...

متن کامل

P-182: The Role of Vascular Endothelial Growth Factor Gene Expression in Patients with the History of Endometriosis

Background: Endometriosis is the presence of endometrium- like tissue in sites outside the uterine cavity, primarily on the pelvic peritoneum and ovaries. Ectopic endometrium for replacement and growth require to blood supply. Vascular endothelial growth factor (VEGF) is one of the most important intermediate of locality angiogenesis that product by monocytes and macrophages. This study evaluat...

متن کامل

Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells

Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 66  شماره 

صفحات  -

تاریخ انتشار 1997